

APPLIED CHEMISTRY

Page 1

UNIT -II STRUCTURE AND BONDING MODELS

1. a) Explain Planck's Quantum Theory.	[L2] [CO2] [6M]	
b)Write short note on Wave-Particle duality of an electron	[L2] [CO2] [6M]	
2. Derive Schrodinger wave equation? Explain the significance of the Ψ and Ψ^2	. [L3] [CO2] [12M]	
3. a) Explain pi- molecular orbital's of Butadiene with a neat sketch.	[L3] [CO2] [6M]	
b) Explain pi- molecular orbital of Benzene with a neat sketch.	[L3] [CO2] [6M]	
4. a) Write De-Broglie's equation.	[L1] [CO2] [6M]	
b) Explain Heisenberg Uncertainty principle.	[L2] [CO2] [6M]	
5. Draw the molecular orbital diagrams of Oxygen molecule (O ₂) and Nitrogen molecule		
(N ₂). Explain their magnetic nature and bond order.	[L3] [CO2] [12M]	
6. Explain the energy level diagrams of CO and NO molecule. Explain their magnetic		
nature and Bond order.	[L3] [CO2] [12M]	
7. a) Construct the molecular orbital energy level diagram of H_2 , H_2^{+}	[L3] [CO2] [7M]	
b)Why is it impossible to determine accurately both position and velocity of an electron at		
any instance	[L4] [CO2] [5M]	
8. a) Write the postulates of molecular orbital theory.	[L1] [CO2] [6M]	
b)what are the differences between bonding and antibonding	[L4] [CO2] [6M]	
9. What is Crystal field theory? Explain the crystal field splitting in octahedral and tetrahedral		
Complexes.	[L3] [CO2] [12M]	
10. a)Draw the shapes of various d – orbitals and explain why they are splitted into two groups in an		
octahedral ligand field	[L3] [CO2] [6M]	
b) Construct the molecular orbital energy level diagram of O_2^+ , O_2^-	[L3] [CO2] [6M]	

APPLIED CHEMISTRY

Question Bank 2020

UNIT III POLYMER CHEMISTRY

1. a) What is functionality of monomer?	[L1] [CO3] [5M]
b) Write a note on nomenclature of polymers.	[L1] [CO3] [7M]
2. Explain the following mechanism.	
a) Free radical addition polymerization.	[L3] [CO3] [6M]
b) Cationic addition polymerization.	[L3] [CO3] [6M]
3. Explain the following mechanism .	
a) Anionic addition polymerization.	[L3] [CO3] [6M]
b) Co-ordination or Ziegler-Natta polymerization.	[L3] [CO3] [6M]
4. Explain the following mechanism with examples.	
a) Condensation or Step growth polymerization.	[L3] [CO3] [6M]
b) Co-polymerization.	[L3] [CO3] [6M]
5. Explain the mechanism of Addition polymerization.	[L2] [CO3] [12M]
6. a) Distinguish between Thermoplastics and Thermosetting plastics.	[L4] [CO3] [6M]
b) Describe the preparation, properties and uses of Bakelite.	[L3] [CO3] [6M]
7. a) Describe the preparation, properties and uses of Nylon-6,6.	[L3] [CO3] [5M]
b) Describe the preparation, properties and uses of Carbon Fibers	[L3] [CO3] [7M]
8. What are conducting polymers? How are they classified? Write the synthesis and Engineering applications of poly acetylene and polyaniline polymers.	[L3] [CO3] [12M]
9. Write the preparation, properties and application of Buna-S rubber and Buna-N rubber	[L2] [CO3] [12M]
10. a) Write a note on Thermoplastic and Thermosetting resin.	[L2] [CO3] [6M]
b) Write the preparation, properties and uses of Phenol-Formaldehyde resin.	[L2] [CO3] [6M]
	[-] [0] [0]

Question Bank 2020

UNIT-IV

INSTRUMENTAL METHODS AND APPLICATIONS

1. a) Write a short note on Beer-Lambert's Law.	[L1] [CO4] [5M]
b) Write a note on atomic absorption and molecular absorption.	[L1] [CO4] [7M]
2.Explain the principle, working and applications of Thin layer chromatography	. [L2] [CO4] [12M]
3. Explain the working principle of Atomic Absorption Spectrometer(AAS) and determine the nickel using by AAS?	How will you [L2] [CO4] [12M]
4. Give an account on principle and instrumentation of IR spectroscopy. Explain stretching and bending vibrations.	[L2] [CO4] [12M]
5. Explain principle & instrumentation of UV-visible spectroscopy with neat diag	gram. [L2][CO4][12M]
6. What is meant by Chromatography ? Define the main parts of an High Perform Chromatography (HPLC).	nance Liquid [L2] [CO4] [12M]
7. a) Explain the principle and instrumentation of Gas Chromatography.b) Write any four applications of Gas Chromatography	[L2] [CO4] [8M] [L1] [CO4] [4M]
8 a) Explain the main components of gas chromatographyb) Distinguish between gas chromatography and High Performance Liquid	[L2] [CO4] [6M]
Chromatography	[L4] [CO4] [6M]
9. Explain the separating methods of Gaseous Mixtures?	[L2] [CO4] [12M]
10. Describe the various methods for separating the Liquid Mixtures?	[L3] [CO4] [12M]

Question Bank 2020

UNIT-V MODERN ENGINEERING MATERIALS

1. Explain in detail about principle and application of semiconductors?	[L2] [CO5] [12M]
2.Discuss about Super conductors and their applications?	[L3] [CO5] [12M]
3.a) What is doping ? Explain the role of doping on band structure.	[L2] [CO5] [7M]
b)Write a note on Liquid Insulating Materials.	[L1] [CO5] [5M
4.a) Write a note on Liquid Insulating Materials.	[L1] [CO5] [5M]
b) Write the Properties of Nanomaterials.	[L1] [CO5] [7M]
5. a) Define Dielectrics ? What are the characteristics of Electrical Insulators.	[L2] [CO5] [6M]
b) Classification of Insulating material and their applications.	[L2] [CO5] [6M]
6.a) What is basic lock and key principle ?	[L1] [CO5] [6M]
b) Write a short note on Complementarity.	[L1] [CO5] [6M]
7. Explain the applications of supramolecules in	
a) Sensors, Gas storage.	[L2] [CO5] [7M]
b) Molecular switches.	[L2] [CO5] [5M]
8. a) What is meant by Nanomaterials ? How are Nanomaterials Classified.	[L3] [CO5] [4M]
b) How do you apply Catalyst, medical in the application of supramolecules?	[L4] [CO5] [8M]
9.a)Write an account on Carbon Nano Tubes.	[L1] [CO5] [6M]
b)Write a note on Fullerenes	[L1] [CO5] [6M]
10.Write a brief note on Fullerenes and Carbon nano tubes	[L1] [CO5] [12M]

APPLIED CHEMISTRY

Page 5